Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear-Time Algorithm for Long LCF with $k$ Mismatches (1802.06369v1)

Published 18 Feb 2018 in cs.DS

Abstract: In the Longest Common Factor with $k$ Mismatches (LCF$_k$) problem, we are given two strings $X$ and $Y$ of total length $n$, and we are asked to find a pair of maximal-length factors, one of $X$ and the other of $Y$, such that their Hamming distance is at most $k$. Thankachan et al. show that this problem can be solved in $\mathcal{O}(n \logk n)$ time and $\mathcal{O}(n)$ space for constant $k$. We consider the LCF$_k$($\ell$) problem in which we assume that the sought factors have length at least $\ell$, and the LCF$_k$($\ell$) problem for $\ell=\Omega(\log{2k+2} n)$, which we call the Long LCF$_k$ problem. We use difference covers to reduce the Long LCF$_k$ problem to a task involving $m=\mathcal{O}(n/\log{k+1}n)$ synchronized factors. The latter can be solved in $\mathcal{O}(m \log{k+1}m)$ time, which results in a linear-time algorithm for Long LCF$_k$. In general, our solution to LCF$_k$($\ell$) for arbitrary $\ell$ takes $\mathcal{O}(n + n \log{k+1} n/\sqrt{\ell})$ time.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.