Papers
Topics
Authors
Recent
2000 character limit reached

Post Selection Inference with Incomplete Maximum Mean Discrepancy Estimator (1802.06226v1)

Published 17 Feb 2018 in stat.ML

Abstract: Measuring divergence between two distributions is essential in machine learning and statistics and has various applications including binary classification, change point detection, and two-sample test. Furthermore, in the era of big data, designing divergence measure that is interpretable and can handle high-dimensional and complex data becomes extremely important. In the paper, we propose a post selection inference (PSI) framework for divergence measure, which can select a set of statistically significant features that discriminate two distributions. Specifically, we employ an additive variant of maximum mean discrepancy (MMD) for features and introduce a general hypothesis test for PSI. A novel MMD estimator using the incomplete U-statistics, which has an asymptotically Normal distribution (under mild assumptions) and gives high detection power in PSI, is also proposed and analyzed theoretically. Through synthetic and real-world feature selection experiments, we show that the proposed framework can successfully detect statistically significant features. Last, we propose a sample selection framework for analyzing different members in the Generative Adversarial Networks (GANs) family.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.