Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Contrast Subgraph Mining from Coherent Cores (1802.06189v1)

Published 17 Feb 2018 in cs.SI

Abstract: Graph pattern mining methods can extract informative and useful patterns from large-scale graphs and capture underlying principles through the overwhelmed information. Contrast analysis serves as a keystone in various fields and has demonstrated its effectiveness in mining valuable information. However, it has been long overlooked in graph pattern mining. Therefore, in this paper, we introduce the concept of contrast subgraph, that is, a subset of nodes that have significantly different edges or edge weights in two given graphs of the same node set. The major challenge comes from the gap between the contrast and the informativeness. Because of the widely existing noise edges in real-world graphs, the contrast may lead to subgraphs of pure noise. To avoid such meaningless subgraphs, we leverage the similarity as the cornerstone of the contrast. Specifically, we first identify a coherent core, which is a small subset of nodes with similar edge structures in the two graphs, and then induce contrast subgraphs from the coherent cores. Moreover, we design a general family of coherence and contrast metrics and derive a polynomial-time algorithm to efficiently extract contrast subgraphs. Extensive experiments verify the necessity of introducing coherent cores as well as the effectiveness and efficiency of our algorithm. Real-world applications demonstrate the tremendous potentials of contrast subgraph mining.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.