Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Contrast Subgraph Mining from Coherent Cores (1802.06189v1)

Published 17 Feb 2018 in cs.SI

Abstract: Graph pattern mining methods can extract informative and useful patterns from large-scale graphs and capture underlying principles through the overwhelmed information. Contrast analysis serves as a keystone in various fields and has demonstrated its effectiveness in mining valuable information. However, it has been long overlooked in graph pattern mining. Therefore, in this paper, we introduce the concept of contrast subgraph, that is, a subset of nodes that have significantly different edges or edge weights in two given graphs of the same node set. The major challenge comes from the gap between the contrast and the informativeness. Because of the widely existing noise edges in real-world graphs, the contrast may lead to subgraphs of pure noise. To avoid such meaningless subgraphs, we leverage the similarity as the cornerstone of the contrast. Specifically, we first identify a coherent core, which is a small subset of nodes with similar edge structures in the two graphs, and then induce contrast subgraphs from the coherent cores. Moreover, we design a general family of coherence and contrast metrics and derive a polynomial-time algorithm to efficiently extract contrast subgraphs. Extensive experiments verify the necessity of introducing coherent cores as well as the effectiveness and efficiency of our algorithm. Real-world applications demonstrate the tremendous potentials of contrast subgraph mining.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.