Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Monte Carlo Q-learning for General Game Playing (1802.05944v2)

Published 16 Feb 2018 in cs.AI

Abstract: After the recent groundbreaking results of AlphaGo, we have seen a strong interest in reinforcement learning in game playing. General Game Playing (GGP) provides a good testbed for reinforcement learning. In GGP, a specification of games rules is given. GGP problems can be solved by reinforcement learning. Q-learning is one of the canonical reinforcement learning methods, and has been used by (Banerjee & Stone, IJCAI 2007) in GGP. In this paper we implement Q-learning in GGP for three small-board games (Tic-Tac-Toe, Connect Four, Hex), to allow comparison to Banerjee et al. As expected, Q-learning converges, although much slower than MCTS. Borrowing an idea from MCTS, we enhance Q-learning with Monte Carlo Search, to give QM-learning. This enhancement improves the performance of pure Q-learning. We believe that QM-learning can also be used to improve performance of reinforcement learning further for larger games, something which we will test in future work.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube