Papers
Topics
Authors
Recent
Search
2000 character limit reached

Train on Validation: Squeezing the Data Lemon

Published 16 Feb 2018 in stat.ML and cs.LG | (1802.05846v1)

Abstract: Model selection on validation data is an essential step in machine learning. While the mixing of data between training and validation is considered taboo, practitioners often violate it to increase performance. Here, we offer a simple, practical method for using the validation set for training, which allows for a continuous, controlled trade-off between performance and overfitting of model selection. We define the notion of on-average-validation-stable algorithms as one in which using small portions of validation data for training does not overfit the model selection process. We then prove that stable algorithms are also validation stable. Finally, we demonstrate our method on the MNIST and CIFAR-10 datasets using stable algorithms as well as state-of-the-art neural networks. Our results show significant increase in test performance with a minor trade-off in bias admitted to the model selection process.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.