Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Anytime Algorithm for Task and Motion MDPs (1802.05835v1)

Published 16 Feb 2018 in cs.AI

Abstract: Integrated task and motion planning has emerged as a challenging problem in sequential decision making, where a robot needs to compute high-level strategy and low-level motion plans for solving complex tasks. While high-level strategies require decision making over longer time-horizons and scales, their feasibility depends on low-level constraints based upon the geometries and continuous dynamics of the environment. The hybrid nature of this problem makes it difficult to scale; most existing approaches focus on deterministic, fully observable scenarios. We present a new approach where the high-level decision problem occurs in a stochastic setting and can be modeled as a Markov decision process. In contrast to prior efforts, we show that complete MDP policies, or contingent behaviors, can be computed effectively in an anytime fashion. Our algorithm continuously improves the quality of the solution and is guaranteed to be probabilistically complete. We evaluate the performance of our approach on a challenging, realistic test problem: autonomous aircraft inspection. Our results show that we can effectively compute consistent task and motion policies for the most likely execution-time outcomes using only a fraction of the computation required to develop the complete task and motion policy.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.