Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Auto-Encoding Total Correlation Explanation (1802.05822v1)

Published 16 Feb 2018 in cs.LG and stat.ML

Abstract: Advances in unsupervised learning enable reconstruction and generation of samples from complex distributions, but this success is marred by the inscrutability of the representations learned. We propose an information-theoretic approach to characterizing disentanglement and dependence in representation learning using multivariate mutual information, also called total correlation. The principle of total Cor-relation Ex-planation (CorEx) has motivated successful unsupervised learning applications across a variety of domains, but under some restrictive assumptions. Here we relax those restrictions by introducing a flexible variational lower bound to CorEx. Surprisingly, we find that this lower bound is equivalent to the one in variational autoencoders (VAE) under certain conditions. This information-theoretic view of VAE deepens our understanding of hierarchical VAE and motivates a new algorithm, AnchorVAE, that makes latent codes more interpretable through information maximization and enables generation of richer and more realistic samples.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.