Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

ISEC: Iterative over-Segmentation via Edge Clustering (1802.05816v1)

Published 16 Feb 2018 in cs.CV

Abstract: Several image pattern recognition tasks rely on superpixel generation as a fundamental step. Image analysis based on superpixels facilitates domain-specific applications, also speeding up the overall processing time of the task. Recent superpixel methods have been designed to fit boundary adherence, usually regulating the size and shape of each superpixel in order to mitigate the occurrence of undersegmentation failures. Superpixel regularity and compactness sometimes imposes an excessive number of segments in the image, which ultimately decreases the efficiency of the final segmentation, specially in video segmentation. We propose here a novel method to generate superpixels, called iterative over-segmentation via edge clustering (ISEC), which addresses the over-segmentation problem from a different perspective in contrast to recent state-of-the-art approaches. ISEC iteratively clusters edges extracted from the image objects, providing adaptive superpixels in size, shape and quantity, while preserving suitable adherence to the real object boundaries. All this is achieved at a very low computational cost. Experiments show that ISEC stands out from existing methods, meeting a favorable balance between segmentation stability and accurate representation of motion discontinuities, which are features specially suitable to video segmentation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.