Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Power-of-d-choices with Least Loaded Server Selection (1802.05420v1)

Published 15 Feb 2018 in cs.PF

Abstract: Motivated by distributed schedulers that combine the power-of-d-choices with late binding and systems that use replication with cancellation-on-start, we study the performance of the LL(d) policy which assigns a job to a server that currently has the least workload among d randomly selected servers in large-scale homogeneous clusters. We consider general service time distributions and propose a partial integro-differential equation to describe the evolution of the system. This equation relies on the earlier proven ansatz for LL(d) which asserts that the workload distribution of any finite set of queues becomes independent of one another as the number of servers tends to infinity. Based on this equation we propose a fixed point iteration for the limiting workload distribution and study its convergence. For exponential job sizes we present a simple closed form expression for the limiting workload distribution that is valid for any work-conserving service discipline as well as for the limiting response time distribution in case of first-come-first-served scheduling. We further show that for phase-type distributed job sizes the limiting workload and response time distribution can be expressed via the unique solution of a simple set of ordinary differential equations. Numerical and analytical results that compare response time of the classic power-of-d-choices algorithm and the LL(d) policy are also presented and the accuracy of the limiting response time distribution for finite systems is illustrated using simulation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.