Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Selecting the Best in GANs Family: a Post Selection Inference Framework (1802.05411v2)

Published 15 Feb 2018 in cs.LG and stat.ML

Abstract: "Which Generative Adversarial Networks (GANs) generates the most plausible images?" has been a frequently asked question among researchers. To address this problem, we first propose an \emph{incomplete} U-statistics estimate of maximum mean discrepancy $\mathrm{MMD}{inc}$ to measure the distribution discrepancy between generated and real images. $\mathrm{MMD}{inc}$ enjoys the advantages of asymptotic normality, computation efficiency, and model agnosticity. We then propose a GANs analysis framework to select and test the "best" member in GANs family using the Post Selection Inference (PSI) with $\mathrm{MMD}{inc}$. In the experiments, we adopt the proposed framework on 7 GANs variants and compare their $\mathrm{MMD}{inc}$ scores.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube