Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Retrieval Modeling Using Cross Convolution Networks And Multi Frequency Word Embedding (1802.05373v2)

Published 15 Feb 2018 in cs.CL

Abstract: To build a satisfying chatbot that has the ability of managing a goal-oriented multi-turn dialogue, accurate modeling of human conversation is crucial. In this paper we concentrate on the task of response selection for multi-turn human-computer conversation with a given context. Previous approaches show weakness in capturing information of rare keywords that appear in either or both context and correct response, and struggle with long input sequences. We propose Cross Convolution Network (CCN) and Multi Frequency word embedding to address both problems. We train several models using the Ubuntu Dialogue dataset which is the largest freely available multi-turn based dialogue corpus. We further build an ensemble model by averaging predictions of multiple models. We achieve a new state-of-the-art on this dataset with considerable improvements compared to previous best results.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.