Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Necessary and Sufficient Null Space Condition for Nuclear Norm Minimization in Low-Rank Matrix Recovery (1802.05234v1)

Published 14 Feb 2018 in math.OC, cs.IT, cs.LG, eess.SP, math.IT, and stat.ML

Abstract: Low-rank matrix recovery has found many applications in science and engineering such as machine learning, signal processing, collaborative filtering, system identification, and Euclidean embedding. But the low-rank matrix recovery problem is an NP hard problem and thus challenging. A commonly used heuristic approach is the nuclear norm minimization. In [12,14,15], the authors established the necessary and sufficient null space conditions for nuclear norm minimization to recover every possible low-rank matrix with rank at most r (the strong null space condition). In addition, in [12], Oymak et al. established a null space condition for successful recovery of a given low-rank matrix (the weak null space condition) using nuclear norm minimization, and derived the phase transition for the nuclear norm minimization. In this paper, we show that the weak null space condition in [12] is only a sufficient condition for successful matrix recovery using nuclear norm minimization, and is not a necessary condition as claimed in [12]. In this paper, we further give a weak null space condition for low-rank matrix recovery, which is both necessary and sufficient for the success of nuclear norm minimization. At the core of our derivation are an inequality for characterizing the nuclear norms of block matrices, and the conditions for equality to hold in that inequality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube