Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Learning with Apache SystemML (1802.04647v1)

Published 8 Feb 2018 in cs.LG and cs.DC

Abstract: Enterprises operate large data lakes using Hadoop and Spark frameworks that (1) run a plethora of tools to automate powerful data preparation/transformation pipelines, (2) run on shared, large clusters to (3) perform many different analytics tasks ranging from model preparation, building, evaluation, and tuning for both machine learning and deep learning. Developing machine/deep learning models on data in such shared environments is challenging. Apache SystemML provides a unified framework for implementing machine learning and deep learning algorithms in a variety of shared deployment scenarios. SystemML's novel compilation approach automatically generates runtime execution plans for machine/deep learning algorithms that are composed of single-node and distributed runtime operations depending on data and cluster characteristics such as data size, data sparsity, cluster size, and memory configurations, while still exploiting the capabilities of the underlying big data frameworks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.