Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Automated Early Leaderboard Generation From Comparative Tables (1802.04538v2)

Published 13 Feb 2018 in cs.DL and cs.IR

Abstract: A leaderboard is a tabular presentation of performance scores of the best competing techniques that address a specific scientific problem. Manually maintained leaderboards take time to emerge, which induces a latency in performance discovery and meaningful comparison. This can delay dissemination of best practices to non-experts and practitioners. Regarding papers as proxies for techniques, we present a new system to automatically discover and maintain leaderboards in the form of partial orders between papers, based on performance reported therein. In principle, a leaderboard depends on the task, data set, other experimental settings, and the choice of performance metrics. Often there are also tradeoffs between different metrics. Thus, leaderboard discovery is not just a matter of accurately extracting performance numbers and comparing them. In fact, the levels of noise and uncertainty around performance comparisons are so large that reliable traditional extraction is infeasible. We mitigate these challenges by using relatively cleaner, structured parts of the papers, e.g., performance tables. We propose a novel performance improvement graph with papers as nodes, where edges encode noisy performance comparison information extracted from tables. Every individual performance edge is extracted from a table with citations to other papers. These extractions resemble (noisy) outcomes of 'matches' in an incomplete tournament. We propose several approaches to rank papers from these noisy 'match' outcomes. We show that our ranking scheme can reproduce various manually curated leaderboards very well. Using widely-used lists of state-of-the-art papers in 27 areas of Computer Science, we demonstrate that our system produces very reliable rankings.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.