Papers
Topics
Authors
Recent
2000 character limit reached

A Dimension-Independent discriminant between distributions (1802.04497v1)

Published 13 Feb 2018 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Henze-Penrose divergence is a non-parametric divergence measure that can be used to estimate a bound on the Bayes error in a binary classification problem. In this paper, we show that a cross-match statistic based on optimal weighted matching can be used to directly estimate Henze-Penrose divergence. Unlike an earlier approach based on the Friedman-Rafsky minimal spanning tree statistic, the proposed method is dimension-independent. The new approach is evaluated using simulation and applied to real datasets to obtain Bayes error estimates.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.