Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Neural Networks Learn Non-Smooth Functions Effectively (1802.04474v2)

Published 13 Feb 2018 in stat.ML

Abstract: We theoretically discuss why deep neural networks (DNNs) performs better than other models in some cases by investigating statistical properties of DNNs for non-smooth functions. While DNNs have empirically shown higher performance than other standard methods, understanding its mechanism is still a challenging problem. From an aspect of the statistical theory, it is known many standard methods attain the optimal rate of generalization errors for smooth functions in large sample asymptotics, and thus it has not been straightforward to find theoretical advantages of DNNs. This paper fills this gap by considering learning of a certain class of non-smooth functions, which was not covered by the previous theory. We derive the generalization error of estimators by DNNs with a ReLU activation, and show that convergence rates of the generalization by DNNs are almost optimal to estimate the non-smooth functions, while some of the popular models do not attain the optimal rate. In addition, our theoretical result provides guidelines for selecting an appropriate number of layers and edges of DNNs. We provide numerical experiments to support the theoretical results.

Citations (119)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.