Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Regression for Speaker Verification (1802.04113v1)

Published 12 Feb 2018 in cs.SD and eess.AS

Abstract: This paper presents a linear regression based back-end for speaker verification. Linear regression is a simple linear model that minimizes the mean squared estimation error between the target and its estimate with a closed form solution, where the target is defined as the ground-truth indicator vectors of utterances. We use the linear regression model to learn speaker models from a front-end, and verify the similarity of two speaker models by a cosine similarity scoring classifier. To evaluate the effectiveness of the linear regression model, we construct three speaker verification systems that use the Gaussian mixture model and identity-vector (GMM/i-vector) front-end, deep neural network and i-vector (DNN/i-vector) front-end, and deep vector (d-vector) front-end as their front-ends, respectively. Our empirical comparison results on the NIST speaker recognition evaluation data sets show that the proposed method outperforms within-class covariance normalization, linear discriminant analysis, and probabilistic linear discriminant analysis, given any of the three front-ends.

Citations (2)

Summary

We haven't generated a summary for this paper yet.