Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear Regression for Speaker Verification (1802.04113v1)

Published 12 Feb 2018 in cs.SD and eess.AS

Abstract: This paper presents a linear regression based back-end for speaker verification. Linear regression is a simple linear model that minimizes the mean squared estimation error between the target and its estimate with a closed form solution, where the target is defined as the ground-truth indicator vectors of utterances. We use the linear regression model to learn speaker models from a front-end, and verify the similarity of two speaker models by a cosine similarity scoring classifier. To evaluate the effectiveness of the linear regression model, we construct three speaker verification systems that use the Gaussian mixture model and identity-vector (GMM/i-vector) front-end, deep neural network and i-vector (DNN/i-vector) front-end, and deep vector (d-vector) front-end as their front-ends, respectively. Our empirical comparison results on the NIST speaker recognition evaluation data sets show that the proposed method outperforms within-class covariance normalization, linear discriminant analysis, and probabilistic linear discriminant analysis, given any of the three front-ends.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)