Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generalization of an Upper Bound on the Number of Nodes Needed to Achieve Linear Separability (1802.03488v1)

Published 10 Feb 2018 in stat.ML and cs.LG

Abstract: An important issue in neural network research is how to choose the number of nodes and layers such as to solve a classification problem. We provide new intuitions based on earlier results by An et al. (2015) by deriving an upper bound on the number of nodes in networks with two hidden layers such that linear separability can be achieved. Concretely, we show that if the data can be described in terms of N finite sets and the used activation function f is non-constant, increasing and has a left asymptote, we can derive how many nodes are needed to linearly separate these sets. This will be an upper bound that depends on the structure of the data. This structure can be analyzed using an algorithm. For the leaky rectified linear activation function, we prove separately that under some conditions on the slope, the same number of layers and nodes as for the aforementioned activation functions is sufficient. We empirically validate our claims.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.