Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallelizing Workload Execution in Embedded and High-Performance Heterogeneous Systems (1802.03316v1)

Published 9 Feb 2018 in cs.DC

Abstract: In this paper, we introduce a software-defined framework that enables the parallel utilization of all the programmable processing resources available in heterogeneous system-on-chip (SoC) including FPGA-based hardware accelerators and programmable CPUs. Two platforms with different architectures are considered, and a single C/C++ source code is used in both of them for the CPU and FPGA resources. Instead of simply using the hardware accelerator to offload a task from the CPU, we propose a scheduler that dynamically distributes the tasks among all the resources to fully exploit all computing devices while minimizing load unbalance. The multi-architecture study compares an ARMV7 and ARMV8 implementation with different number and type of CPU cores and also different FPGA micro-architecture and size. We measure that both platforms benefit from having the CPU cores assist FPGA execution at the same level of energy requirements.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.