Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A mixed finite element for weakly-symmetric elasticity (1802.02976v1)

Published 8 Feb 2018 in math.NA and cs.CE

Abstract: We develop a finite element discretization for the weakly symmetric equations of linear elasticity on tetrahedral meshes. The finite element combines, for $r \geq 0$, discontinuous polynomials of $r$ for the displacement, $H(\mathrm{div})$-conforming polynomials of order $r+1$ for the stress, and $H(\mathrm{curl})$-conforming polynomials of order $r+1$ for the vector representation of the multiplier. We prove that this triplet is stable and has optimal approximation properties. The lowest order case can be combined with inexact quadrature to eliminate the stress and multiplier variables, leaving a compact cell-centered finite volume scheme for the displacement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tobin Isaac (10 papers)

Summary

We haven't generated a summary for this paper yet.