Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Learning of Binomial HMMs for DNA Methylation Data (1802.02498v1)

Published 7 Feb 2018 in cs.LG and stat.ML

Abstract: We consider learning parameters of Binomial Hidden Markov Models, which may be used to model DNA methylation data. The standard algorithm for the problem is EM, which is computationally expensive for sequences of the scale of the mammalian genome. Recently developed spectral algorithms can learn parameters of latent variable models via tensor decomposition, and are highly efficient for large data. However, these methods have only been applied to categorial HMMs, and the main challenge is how to extend them to Binomial HMMs while still retaining computational efficiency. We address this challenge by introducing a new feature-map based approach that exploits specific properties of Binomial HMMs. We provide theoretical performance guarantees for our algorithm and evaluate it on real DNA methylation data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.