Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Novel Co-design Peta-scale Heterogeneous Cluster for Deep Learning Training (1802.02326v3)

Published 7 Feb 2018 in cs.CV

Abstract: Large scale deep Convolution Neural Networks (CNNs) increasingly demands the computing power. It is key for researchers to own a great powerful computing platform to leverage deep learning (DL) advancing.On the other hand, as the commonly-used accelerator, the commodity GPUs cards of new generations are more and more expensive. Consequently, it is of importance to design an affordable distributed heterogeneous system that provides powerful computational capacity and develop a well-suited software that efficiently utilizes its computational capacity. In this paper, we present our co-design distributed system including a peta-scale GPU cluster, called "Manoa". Based on properties and topology of Manoa, we first propose job server framework and implement it, named "MiMatrix". The central node of MiMatrix, referred to as the job server, undertakes all of controlling, scheduling and monitoring, and I/O tasks without weight data transfer for AllReduce processing in each iteration. Therefore, MiMatrix intrinsically solves the bandwidth bottleneck of central node in parameter server framework that is widely used in distributed DL tasks. Meanwhile, we also propose a new AllReduce algorithm, GPUDirect RDMA-Aware AllReduce~(GDRAA), in which both computation and handshake message are O(1) and the number of synchronization is two in each iteration that is a theoretical minimum number. Owe to the dedicated co-design distributed system, MiMatrix efficiently makes use of the Manoa's computational capacity and bandwidth. We benchmark Manoa Resnet50 and Resenet101 on Imagenet-1K dataset. Some of results have demonstrated state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.