Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product (1802.02325v2)

Published 7 Feb 2018 in cs.CC and cs.DS

Abstract: In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which we are given sets $A$ and $B$ of vectors, and the goal is to find $a \in A$ and $b \in B$ maximizing inner product $a \cdot b$. Max-IP is very basic and serves as the base problem in the recent breakthrough of [Abboud et al., FOCS 2017] on hardness of approximation for polynomial-time problems. It is also used (implicitly) in the argument for hardness of exact $\ell_2$-Furthest Pair (and other important problems in computational geometry) in poly-log-log dimensions in [Williams, SODA 2018]. We have three main results regarding this problem. First, we study the best multiplicative approximation ratio for Boolean Max-IP in sub-quadratic time. We show that, for Max-IP with two sets of $n$ vectors from ${0,1}{d}$, there is an $n{2 - \Omega(1)}$ time $\left( d/\log n \right){\Omega(1)}$-multiplicative-approximating algorithm, and we show this is conditionally optimal, as such a $\left(d/\log n\right){o(1)}$-approximating algorithm would refute SETH. Second, we achieve a similar characterization for the best additive approximation error to Boolean Max-IP. We show that, for Max-IP with two sets of $n$ vectors from ${0,1}{d}$, there is an $n{2 - \Omega(1)}$ time $\Omega(d)$-additive-approximating algorithm, and this is conditionally optimal, as such an $o(d)$-approximating algorithm would refute SETH [Rubinstein, STOC 2018]. Last, we revisit the hardness of solving Max-IP exactly for vectors with integer entries. We show that, under SETH, for Max-IP with sets of $n$ vectors from $\mathbb{Z}{d}$ for some $d = 2{O(\log{*} n)}$, every exact algorithm requires $n{2 - o(1)}$ time. With the reduction from [Williams, SODA 2018], it follows that $\ell_2$-Furthest Pair and Bichromatic $\ell_2$-Closest Pair in $2{O(\log{*} n)}$ dimensions require $n{2 - o(1)}$ time.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.