Papers
Topics
Authors
Recent
Search
2000 character limit reached

Practical Transfer Learning for Bayesian Optimization

Published 6 Feb 2018 in stat.ML and cs.AI | (1802.02219v4)

Abstract: When hyperparameter optimization of a machine learning algorithm is repeated for multiple datasets it is possible to transfer knowledge to an optimization run on a new dataset. We develop a new hyperparameter-free ensemble model for Bayesian optimization that is a generalization of two existing transfer learning extensions to Bayesian optimization and establish a worst-case bound compared to vanilla Bayesian optimization. Using a large collection of hyperparameter optimization benchmark problems, we demonstrate that our contributions substantially reduce optimization time compared to standard Gaussian process-based Bayesian optimization and improve over the current state-of-the-art for transfer hyperparameter optimization.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.