Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FastNet (1802.02186v1)

Published 17 Jan 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Inception and the Resnet family of Convolutional Neural Network archi-tectures have broken records in the past few years, but recent state of the art models have also incurred very high computational cost in terms of training, inference and model size. Making the deployment of these models on Edge devices, impractical. In light of this, we present a new novel architecture that is designed for high computational efficiency on both GPUs and CPUs, and is highly suited for deployment on Mobile Applications, Smart Cameras, Iot devices and controllers as well as low cost drones. Our architecture boasts competitive accuracies on standard Datasets even out-performing the original Resnet. We present below the motivation for this research, the architecture of the network, single test accuracies on CIFAR 10 and CIFAR 100 , a detailed comparison with other well-known architectures and link to an implementation in Keras.

Citations (1)

Summary

We haven't generated a summary for this paper yet.