Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials (1802.02050v1)

Published 6 Feb 2018 in cs.CC and cs.DS

Abstract: The theory of kernelization can be used to rigorously analyze data reduction for graph coloring problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input whose size is provably bounded in terms of structural properties, such as the size of a minimum vertex cover. In this paper we settle two open problems about data reduction for q-Coloring. First, we obtain a kernel of bitsize $O(k{q-1}\log{k})$ for q-Coloring parameterized by Vertex Cover, for any q >= 3. This size bound is optimal up to $k{o(1)}$ factors assuming NP is not a subset of coNP/poly, and improves on the previous-best kernel of size $O(kq)$. We generalize this result for deciding q-colorability of a graph G, to deciding the existence of a homomorphism from G to an arbitrary fixed graph H. Furthermore, we can replace the parameter vertex cover by the less restrictive parameter twin-cover. We prove that H-Coloring parameterized by Twin-Cover has a kernel of size $O(k{\Delta(H)}\log k)$. Our second result shows that 3-Coloring does not admit non-trivial sparsification: assuming NP is not a subset of coNP/poly, the parameterization by the number of vertices n admits no (generalized) kernel of size $O(n{2-e})$ for any e > 0. Previously, such a lower bound was only known for coloring with q >= 4 colors.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.