Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Near-Optimal Coresets of Kernel Density Estimates (1802.01751v5)

Published 6 Feb 2018 in cs.LG, cs.CG, and stat.ML

Abstract: We construct near-optimal coresets for kernel density estimates for points in $\mathbb{R}d$ when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size $O(\sqrt{d}/\varepsilon\cdot \sqrt{\log 1/\varepsilon} )$, and we show a near-matching lower bound of size $\Omega(\min{\sqrt{d}/\varepsilon, 1/\varepsilon2})$. When $d\geq 1/\varepsilon2$, it is known that the size of coreset can be $O(1/\varepsilon2)$. The upper bound is a polynomial-in-$(1/\varepsilon)$ improvement when $d \in [3,1/\varepsilon2)$ and the lower bound is the first known lower bound to depend on $d$ for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide-variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.