Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Real-time Prediction of Intermediate-Horizon Automotive Collision Risk (1802.01532v1)

Published 5 Feb 2018 in cs.CV and cs.LG

Abstract: Advanced collision avoidance and driver hand-off systems can benefit from the ability to accurately predict, in real time, the probability a vehicle will be involved in a collision within an intermediate horizon of 10 to 20 seconds. The rarity of collisions in real-world data poses a significant challenge to developing this capability because, as we demonstrate empirically, intermediate-horizon risk prediction depends heavily on high-dimensional driver behavioral features. As a result, a large amount of data is required to fit an effective predictive model. In this paper, we assess whether simulated data can help alleviate this issue. Focusing on highway driving, we present a three-step approach for generating data and fitting a predictive model capable of real-time prediction. First, high-risk automotive scenes are generated using importance sampling on a learned Bayesian network scene model. Second, collision risk is estimated through Monte Carlo simulation. Third, a neural network domain adaptation model is trained on real and simulated data to address discrepancies between the two domains. Experiments indicate that simulated data can mitigate issues resulting from collision rarity, thereby improving risk prediction in real-world data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.