Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diverse Beam Search for Increased Novelty in Abstractive Summarization (1802.01457v1)

Published 5 Feb 2018 in cs.CL

Abstract: Text summarization condenses a text to a shorter version while retaining the important informations. Abstractive summarization is a recent development that generates new phrases, rather than simply copying or rephrasing sentences within the original text. Recently neural sequence-to-sequence models have achieved good results in the field of abstractive summarization, which opens new possibilities and applications for industrial purposes. However, most practitioners observe that these models still use large parts of the original text in the output summaries, making them often similar to extractive frameworks. To address this drawback, we first introduce a new metric to measure how much of a summary is extracted from the input text. Secondly, we present a novel method, that relies on a diversity factor in computing the neural network loss, to improve the diversity of the summaries generated by any neural abstractive model implementing beam search. Finally, we show that this method not only makes the system less extractive, but also improves the overall rouge score of state-of-the-art methods by at least 2 points.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.