Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Diverse Beam Search for Increased Novelty in Abstractive Summarization (1802.01457v1)

Published 5 Feb 2018 in cs.CL

Abstract: Text summarization condenses a text to a shorter version while retaining the important informations. Abstractive summarization is a recent development that generates new phrases, rather than simply copying or rephrasing sentences within the original text. Recently neural sequence-to-sequence models have achieved good results in the field of abstractive summarization, which opens new possibilities and applications for industrial purposes. However, most practitioners observe that these models still use large parts of the original text in the output summaries, making them often similar to extractive frameworks. To address this drawback, we first introduce a new metric to measure how much of a summary is extracted from the input text. Secondly, we present a novel method, that relies on a diversity factor in computing the neural network loss, to improve the diversity of the summaries generated by any neural abstractive model implementing beam search. Finally, we show that this method not only makes the system less extractive, but also improves the overall rouge score of state-of-the-art methods by at least 2 points.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.