Papers
Topics
Authors
Recent
2000 character limit reached

On Higher Inductive Types in Cubical Type Theory (1802.01170v2)

Published 4 Feb 2018 in cs.LO and math.LO

Abstract: Cubical type theory provides a constructive justification to certain aspects of homotopy type theory such as Voevodsky's univalence axiom. This makes many extensionality principles, like function and propositional extensionality, directly provable in the theory. This paper describes a constructive semantics, expressed in a presheaf topos with suitable structure inspired by cubical sets, of some higher inductive types. It also extends cubical type theory by a syntax for the higher inductive types of spheres, torus, suspensions,truncations, and pushouts. All of these types are justified by the semantics and have judgmental computation rules for all constructors, including the higher dimensional ones, and the universes are closed under these type formers.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.