Papers
Topics
Authors
Recent
2000 character limit reached

Incorporating Literals into Knowledge Graph Embeddings (1802.00934v3)

Published 3 Feb 2018 in cs.AI and stat.ML

Abstract: Knowledge graphs, on top of entities and their relationships, contain other important elements: literals. Literals encode interesting properties (e.g. the height) of entities that are not captured by links between entities alone. Most of the existing work on embedding (or latent feature) based knowledge graph analysis focuses mainly on the relations between entities. In this work, we study the effect of incorporating literal information into existing link prediction methods. Our approach, which we name LiteralE, is an extension that can be plugged into existing latent feature methods. LiteralE merges entity embeddings with their literal information using a learnable, parametrized function, such as a simple linear or nonlinear transformation, or a multilayer neural network. We extend several popular embedding models based on LiteralE and evaluate their performance on the task of link prediction. Despite its simplicity, LiteralE proves to be an effective way to incorporate literal information into existing embedding based methods, improving their performance on different standard datasets, which we augmented with their literals and provide as testbed for further research.

Citations (88)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.