Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A deep tree-based model for software defect prediction (1802.00921v1)

Published 3 Feb 2018 in cs.SE

Abstract: Defects are common in software systems and can potentially cause various problems to software users. Different methods have been developed to quickly predict the most likely locations of defects in large code bases. Most of them focus on designing features (e.g. complexity metrics) that correlate with potentially defective code. Those approaches however do not sufficiently capture the syntax and different levels of semantics of source code, an important capability for building accurate prediction models. In this paper, we develop a novel prediction model which is capable of automatically learning features for representing source code and using them for defect prediction. Our prediction system is built upon the powerful deep learning, tree-structured Long Short Term Memory network which directly matches with the Abstract Syntax Tree representation of source code. An evaluation on two datasets, one from open source projects contributed by Samsung and the other from the public PROMISE repository, demonstrates the effectiveness of our approach for both within-project and cross-project predictions.

Citations (107)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.