Papers
Topics
Authors
Recent
2000 character limit reached

Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts (1802.00912v5)

Published 3 Feb 2018 in cs.LG, cs.CV, and stat.ML

Abstract: The splendid success of convolutional neural networks (CNNs) in computer vision is largely attributable to the availability of massive annotated datasets, such as ImageNet and Places. However, in medical imaging, it is challenging to create such large annotated datasets, as annotating medical images is not only tedious, laborious, and time consuming, but it also demands costly, specialty-oriented skills, which are not easily accessible. To dramatically reduce annotation cost, this paper presents a novel method to naturally integrate active learning and transfer learning (fine-tuning) into a single framework, which starts directly with a pre-trained CNN to seek "worthy" samples for annotation and gradually enhances the (fine-tuned) CNN via continual fine-tuning. We have evaluated our method using three distinct medical imaging applications, demonstrating that it can reduce annotation efforts by at least half compared with random selection.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.