Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generating Redundant Features with Unsupervised Multi-Tree Genetic Programming (1802.00554v2)

Published 2 Feb 2018 in cs.NE and cs.AI

Abstract: Recently, feature selection has become an increasingly important area of research due to the surge in high-dimensional datasets in all areas of modern life. A plethora of feature selection algorithms have been proposed, but it is difficult to truly analyse the quality of a given algorithm. Ideally, an algorithm would be evaluated by measuring how well it removes known bad features. Acquiring datasets with such features is inherently difficult, and so a common technique is to add synthetic bad features to an existing dataset. While adding noisy features is an easy task, it is very difficult to automatically add complex, redundant features. This work proposes one of the first approaches to generating redundant features, using a novel genetic programming approach. Initial experiments show that our proposed method can automatically create difficult, redundant features which have the potential to be used for creating high-quality feature selection benchmark datasets.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.