Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Real-world Multi-object, Multi-grasp Detection (1802.00520v3)

Published 1 Feb 2018 in cs.RO

Abstract: A deep learning architecture is proposed to predict graspable locations for robotic manipulation. It considers situations where no, one, or multiple object(s) are seen. By defining the learning problem to be classification with null hypothesis competition instead of regression, the deep neural network with RGB-D image input predicts multiple grasp candidates for a single object or multiple objects, in a single shot. The method outperforms state-of-the-art approaches on the Cornell dataset with 96.0% and 96.1% accuracy on image-wise and object- wise splits, respectively. Evaluation on a multi-object dataset illustrates the generalization capability of the architecture. Grasping experiments achieve 96.0% grasp localization and 88.0% grasping success rates on a test set of household objects. The real-time process takes less than .25 s from image to plan.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.