Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Full Image Recover for Block-Based Compressive Sensing (1802.00179v1)

Published 1 Feb 2018 in cs.CV

Abstract: Recent years, compressive sensing (CS) has improved greatly for the application of deep learning technology. For convenience, the input image is usually measured and reconstructed block by block. This usually causes block effect in reconstructed images. In this paper, we present a novel CNN-based network to solve this problem. In measurement part, the input image is adaptively measured block by block to acquire a group of measurements. While in reconstruction part, all the measurements from one image are used to reconstruct the full image at the same time. Different from previous method recovering block by block, the structure information destroyed in measurement part is recovered in our framework. Block effect is removed accordingly. We train the proposed framework by mean square error (MSE) loss function. Experiments show that there is no block effect at all in the proposed method. And our results outperform 1.8 dB compared with existing methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.