Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences (1801.10304v2)

Published 31 Jan 2018 in cs.CV

Abstract: Action recognition with 3D skeleton sequences is becoming popular due to its speed and robustness. The recently proposed Convolutional Neural Networks (CNN) based methods have shown good performance in learning spatio-temporal representations for skeleton sequences. Despite the good recognition accuracy achieved by previous CNN based methods, there exist two problems that potentially limit the performance. First, previous skeleton representations are generated by chaining joints with a fixed order. The corresponding semantic meaning is unclear and the structural information among the joints is lost. Second, previous models do not have an ability to focus on informative joints. The attention mechanism is important for skeleton based action recognition because there exist spatio-temporal key stages while the joint predictions can be inaccurate. To solve these two problems, we propose a novel CNN based method for skeleton based action recognition. We first redesign the skeleton representations with a depth-first tree traversal order, which enhances the semantic meaning of skeleton images and better preserves the associated structural information. We then propose the idea of a two-branch attention architecture that focuses on spatio-temporal key stages and filters out unreliable joint predictions. A base attention model with the simplest structure is first introduced. By improving the structures in both branches, we further propose a Global Long-sequence Attention Network (GLAN). Furthermore, in order to adjust the kernel's spatio-temporal aspect ratios and better capture long term dependencies, we propose a Sub-Sequence Attention Network (SSAN) that takes sub-image sequences as inputs. Our experiment results on NTU RGB+D and SBU Kinetic Interaction outperforms the state-of-the-art. The model is further validated on noisy estimated poses from UCF101 and Kinetics.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube