Papers
Topics
Authors
Recent
2000 character limit reached

Kernel Distillation for Fast Gaussian Processes Prediction (1801.10273v2)

Published 31 Jan 2018 in stat.ML and cs.LG

Abstract: Gaussian processes (GPs) are flexible models that can capture complex structure in large-scale dataset due to their non-parametric nature. However, the usage of GPs in real-world application is limited due to their high computational cost at inference time. In this paper, we introduce a new framework, \textit{kernel distillation}, to approximate a fully trained teacher GP model with kernel matrix of size $n\times n$ for $n$ training points. We combine inducing points method with sparse low-rank approximation in the distillation procedure. The distilled student GP model only costs $O(m2)$ storage for $m$ inducing points where $m \ll n$ and improves the inference time complexity. We demonstrate empirically that kernel distillation provides better trade-off between the prediction time and the test performance compared to the alternatives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.