Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rigorous Restricted Isometry Property of Low-Dimensional Subspaces (1801.10058v1)

Published 30 Jan 2018 in cs.IT, cs.LG, and math.IT

Abstract: Dimensionality reduction is in demand to reduce the complexity of solving large-scale problems with data lying in latent low-dimensional structures in machine learning and computer version. Motivated by such need, in this work we study the Restricted Isometry Property (RIP) of Gaussian random projections for low-dimensional subspaces in $\mathbb{R}N$, and rigorously prove that the projection Frobenius norm distance between any two subspaces spanned by the projected data in $\mathbb{R}n$ ($n<N$) remain almost the same as the distance between the original subspaces with probability no less than $1 - {\rm e}{-\mathcal{O}(n)}$. Previously the well-known Johnson-Lindenstrauss (JL) Lemma and RIP for sparse vectors have been the foundation of sparse signal processing including Compressed Sensing. As an analogy to JL Lemma and RIP for sparse vectors, this work allows the use of random projections to reduce the ambient dimension with the theoretical guarantee that the distance between subspaces after compression is well preserved.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.