Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Matrix Completion for Structured Observations (1801.09657v1)

Published 29 Jan 2018 in math.NA, cs.LG, and stat.ME

Abstract: The need to predict or fill-in missing data, often referred to as matrix completion, is a common challenge in today's data-driven world. Previous strategies typically assume that no structural difference between observed and missing entries exists. Unfortunately, this assumption is woefully unrealistic in many applications. For example, in the classic Netflix challenge, in which one hopes to predict user-movie ratings for unseen films, the fact that the viewer has not watched a given movie may indicate a lack of interest in that movie, thus suggesting a lower rating than otherwise expected. We propose adjusting the standard nuclear norm minimization strategy for matrix completion to account for such structural differences between observed and unobserved entries by regularizing the values of the unobserved entries. We show that the proposed method outperforms nuclear norm minimization in certain settings.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube