Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimizing Reweighted Belief Propagation for Distributed Likelihood Fusion Problems (1801.09281v2)

Published 28 Jan 2018 in cs.SY

Abstract: Belief propagation (BP) is a powerful tool to solve distributed inference problems, though it is limited by short cycles in the corresponding factor graph. Such cycles may lead to incorrect solutions or oscillatory behavior. Only for certain types of problems are convergence properties understood. We extend this knowledge by investigating the use of reweighted BP for distributed likelihood fusion problems, which are characterized by equality constraints along possibly short cycles. Through a linear formulation of BP, we are able to analytically derive convergence conditions for certain types of graphs and optimize the convergence speed. We compare with standard belief consensus and observe significantly faster convergence.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.