Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Training of Generative Adversarial Networks Using Representative Features (1801.09195v3)

Published 28 Jan 2018 in cs.CV

Abstract: Despite the success of generative adversarial networks (GANs) for image generation, the trade-off between visual quality and image diversity remains a significant issue. This paper achieves both aims simultaneously by improving the stability of training GANs. The key idea of the proposed approach is to implicitly regularize the discriminator using representative features. Focusing on the fact that standard GAN minimizes reverse Kullback-Leibler (KL) divergence, we transfer the representative feature, which is extracted from the data distribution using a pre-trained autoencoder (AE), to the discriminator of standard GANs. Because the AE learns to minimize forward KL divergence, our GAN training with representative features is influenced by both reverse and forward KL divergence. Consequently, the proposed approach is verified to improve visual quality and diversity of state of the art GANs using extensive evaluations.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.