Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Faster Approximate(d) Text-to-Pattern L1 Distance (1801.09159v2)

Published 28 Jan 2018 in cs.DS

Abstract: The problem of finding \emph{distance} between \emph{pattern} of length $m$ and \emph{text} of length $n$ is a typical way of generalizing pattern matching to incorporate dissimilarity score. For both Hamming and $L_1$ distances only a super linear upper bound $\widetilde{O}(n\sqrt{m})$ are known, which prompts the question of relaxing the problem: either by asking for $(1 \pm \varepsilon)$ approximate distance (every distance is reported up to a multiplicative factor), or $k$-approximated distance (distances exceeding $k$ are reported as $\infty$). We focus on $L_1$ distance, for which we show new algorithms achieving complexities respectively $\widetilde{O}(\varepsilon{-1} n)$ and $\widetilde{O}((m+k\sqrt{m}) \cdot n/m)$. This is a significant improvement upon previous algorithms with runtime $\widetilde{O}(\varepsilon{-2} n)$ of Lipsky and Porat [Algorithmica 2011] and $\widetilde{O}(n\sqrt{k})$ of Amir, Lipsky, Porat and Umanski [CPM 2005].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)