Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Aligned to the Object, not to the Image: A Unified Pose-aligned Representation for Fine-grained Recognition (1801.09057v4)

Published 27 Jan 2018 in cs.CV

Abstract: Dramatic appearance variation due to pose constitutes a great challenge in fine-grained recognition, one which recent methods using attention mechanisms or second-order statistics fail to adequately address. Modern CNNs typically lack an explicit understanding of object pose and are instead confused by entangled pose and appearance. In this paper, we propose a unified object representation built from a hierarchy of pose-aligned regions. Rather than representing an object by regions aligned to image axes, the proposed representation characterizes appearance relative to the object's pose using pose-aligned patches whose features are robust to variations in pose, scale and rotation. We propose an algorithm that performs pose estimation and forms the unified object representation as the concatenation of hierarchical pose-aligned regions features, which is then fed into a classification network. The proposed algorithm surpasses the performance of other approaches, increasing the state-of-the-art by nearly 2% on the widely-used CUB-200 dataset and by more than 8% on the much larger NABirds dataset. The effectiveness of this paradigm relative to competing methods suggests the critical importance of disentangling pose and appearance for continued progress in fine-grained recognition.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.