Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploration on Generating Traditional Chinese Medicine Prescription from Symptoms with an End-to-End method (1801.09030v2)

Published 27 Jan 2018 in cs.CL

Abstract: Traditional Chinese Medicine (TCM) is an influential form of medical treatment in China and surrounding areas. In this paper, we propose a TCM prescription generation task that aims to automatically generate a herbal medicine prescription based on textual symptom descriptions. Sequence-to-sequence (seq2seq) model has been successful in dealing with sequence generation tasks. We explore a potential end-to-end solution to the TCM prescription generation task using seq2seq models. However, experiments show that directly applying seq2seq model leads to unfruitful results due to the repetition problem. To solve the problem, we propose a novel decoder with coverage mechanism and a novel soft loss function. The experimental results demonstrate the effectiveness of the proposed approach. Judged by professors who excel in TCM, the generated prescriptions are rated 7.3 out of 10. It shows that the model can indeed help with the prescribing procedure in real life.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)