Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Object category learning and retrieval with weak supervision (1801.08985v2)

Published 26 Jan 2018 in cs.CV and cs.LG

Abstract: We consider the problem of retrieving objects from image data and learning to classify them into meaningful semantic categories with minimal supervision. To that end, we propose a fully differentiable unsupervised deep clustering approach to learn semantic classes in an end-to-end fashion without individual class labeling using only unlabeled object proposals. The key contributions of our work are 1) a kmeans clustering objective where the clusters are learned as parameters of the network and are represented as memory units, and 2) simultaneously building a feature representation, or embedding, while learning to cluster it. This approach shows promising results on two popular computer vision datasets: on CIFAR10 for clustering objects, and on the more complex and challenging Cityscapes dataset for semantically discovering classes which visually correspond to cars, people, and bicycles. Currently, the only supervision provided is segmentation objectness masks, but this method can be extended to use an unsupervised objectness-based object generation mechanism which will make the approach completely unsupervised.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.