Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Supersaliency: A Novel Pipeline for Predicting Smooth Pursuit-Based Attention Improves Generalizability of Video Saliency (1801.08925v3)

Published 26 Jan 2018 in cs.CV and cs.HC

Abstract: Predicting attention is a popular topic at the intersection of human and computer vision. However, even though most of the available video saliency data sets and models claim to target human observers' fixations, they fail to differentiate them from smooth pursuit (SP), a major eye movement type that is unique to perception of dynamic scenes. In this work, we highlight the importance of SP and its prediction (which we call supersaliency, due to greater selectivity compared to fixations), and aim to make its distinction from fixations explicit for computational models. To this end, we (i) use algorithmic and manual annotations of SP and fixations for two well-established video saliency data sets, (ii) train Slicing Convolutional Neural Networks for saliency prediction on either fixation- or SP-salient locations, and (iii) evaluate our and 26 publicly available dynamic saliency models on three data sets against traditional saliency and supersaliency ground truth. Overall, our models outperform the state of the art in both the new supersaliency and the traditional saliency problem settings, for which literature models are optimized. Importantly, on two independent data sets, our supersaliency model shows greater generalization ability and outperforms all other models, even for fixation prediction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.