Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Stacked Filters Stationary Flow For Hardware-Oriented Acceleration Of Deep Convolutional Neural Networks (1801.07459v3)

Published 23 Jan 2018 in cs.CV

Abstract: To address memory and computation resource limitations for hardware-oriented acceleration of deep convolutional neural networks (CNNs), we present a computation flow, stacked filters stationary flow (SFS), and a corresponding data encoding format, relative indexed compressed sparse filter format (CSF), to make the best of data sparsity, and simplify data handling at execution time. And we also propose a three dimensional Single Instruction Multiple Data (3D-SIMD) processor architecture to illustrate how to accelerate deep CNNs by taking advantage of SFS flow and CSF format. Comparing with the state-of-the-art result (Han et al., 2016b), our methods achieve 1.11x improvement in reducing the storage required by AlexNet, and 1.09x improvement in reducing the storage required by SqueezeNet, without loss of accuracy on the ImageNet dataset. Moreover, using these approaches, chip area for logics handling irregular sparse data access can be saved. Comparing with the 2D-SIMD processor structures in DVAS, ENVISION, etc., our methods achieve about 3.65x processing element (PE) array utilization rate improvement (from 26.4\% to 96.5\%) on the data from Deep Compression on AlexNet.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.