Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks (1801.07230v1)

Published 22 Jan 2018 in cs.CV

Abstract: We propose an action recognition framework using Gen- erative Adversarial Networks. Our model involves train- ing a deep convolutional generative adversarial network (DCGAN) using a large video activity dataset without la- bel information. Then we use the trained discriminator from the GAN model as an unsupervised pre-training step and fine-tune the trained discriminator model on a labeled dataset to recognize human activities. We determine good network architectural and hyperparameter settings for us- ing the discriminator from DCGAN as a trained model to learn useful representations for action recognition. Our semi-supervised framework using only appearance infor- mation achieves superior or comparable performance to the current state-of-the-art semi-supervised action recog- nition methods on two challenging video activity datasets: UCF101 and HMDB51.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.