Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Adaptive parallelism with RMI: Idle high-performance computing resources can be completely avoided (1801.07184v2)

Published 22 Jan 2018 in cs.DC, physics.chem-ph, and physics.comp-ph

Abstract: In practice, standard scheduling of parallel computing jobs almost always leaves significant portions of the available hardware unused, even with many jobs still waiting in the queue. The simple reason is that the resource requests of these waiting jobs are fixed and do not match the available, unused resources. However, with alternative but existing and well-established techniques it is possible to achieve a fully automated, adaptive parallelism that does not need pre-set, fixed resources. Here, we demonstrate that such an adaptively parallel program can indeed fill in all such scheduling gaps, even in real-life situations on large supercomputers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube